Cryogenic Propulsion

Completed Technology Project (2012 - 2014)

Project Introduction

Cryogenic propellants can enhance NASA missions. This project will establish that modern cryogenic storage technologies will allow the use of cryogenic propulsion for extended periods. This project will also result in the increased technology readiness level (TRL) of a vital technology that will enhance inspace cryogen storage.

The storage of cryogenic propellants is challenging because heat leaks into the cryogenic storage tanks no matter how good the insulation, resulting in a necessity to vent and maintain the propellant at the appropriate thermodynamic condition for engine operation and tank safety. Although it is challenging to store LO2, it is even more difficult to store LH2 because of its lower boiling point. There is therefore an increased focus for demonstrating LH2 storage in vent-free conditions.

Anticipated Benefits

Provides substantial mass advantage over the use of a cryocooler.

Primary U.S. Work Locations and Key Partners

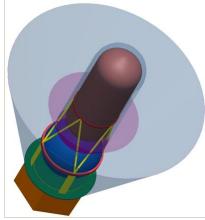
Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland

Cryogenic Propulsion

Table of Contents

Project Introduction Anticipated Benefits	1 1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Links	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Cryogenic Propulsion


Completed Technology Project (2012 - 2014)

Primary U.S. Work Locations

Maryland

Images

11809-1360345665898.jpgCryogenic Propulsion
(https://techport.nasa.gov/image/1637)

11809-1363026410602.jpgCryogenic Propulsion
(https://techport.nasa.gov/imag e/1691)

Links

NTR 1

(http://eNTRe Tracking Identifier: 5025778)

Project Website:

http://sciences.gsfc.nasa.gov/sed/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

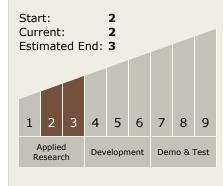
Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes


Project Manager:

Terence A Doiron

Principal Investigator:

Shouvanik Mustafi

Technology Maturity (TRL)

Center Independent Research & Development: GSFC IRAD

Cryogenic Propulsion

Completed Technology Project (2012 - 2014)

Technology Areas

Primary:

Other/Cross-cutting:

• TX14 Thermal Management Systems └─ TX14.1 Cryogenic Systems

